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Effects of the Solvent Refractive Index and Its Dispersion
on the Radiative Decay Rate and Extinction Coefficient
of a Fluorescent Solute
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It is well known that the probabilities of radiative transitions in a medium differ from those in vacu-
um. Excitation of a fluorescent molecule and its radiative decay are examples of radiative transi-
tions. The rates of these processes in solution depend on the optical characteristics of the solvent.
In this article the radiative decay rate and the extinction coefficient of a fluorescent molecule in
solution are expressed in terms of the intrinsic properties of the fluorescent molecule (electronic
transition moments) and the optical characteristics of the solvent (refractive index, group velocity
of light). It is shown that the group velocity does not enter in the final expressions for the radiative
decay rate and the extinction coefficient; this means that the dispersion of the refractive index has
no effect on these quantities. The expressions for both the radiative decay rate and the extinction
coefficient contain the refractive index of the solvent and the local field correction factor. The lat-
ter depends on the cavity model, and, for some cavity models, on the shape of the cavity. Four
types of cavity models are discussed; for each model the limits of applicability are examined.
Experimental evidence in support of specific cavity models is reviewed.

KEY WORDS: Radiative decay rate; extinction coefficient; refractive index; local field correction; empty
cavity model.

by the addition of quenchers, such as molecular oxygen.
The radiative decay rate is often believed to be invariant

It is well known that the quantum yield (n) and
the lifetime (7) of an electronically excited fluorescent
molecule in a transparent host medium are determined

and immutable. The reciprocal of the radiative decay rate
is called the natural lifetime [1],

by the radiative decay rate (k,) and the nonradiative decay 1
rate (k,,) [1]: To = ; 3
_ L (1)
M k, + k,, The term natural lifetime may create a false impres-
sion that this is an intrinsic property of the fluorescent
i 1 ) molecule. However, the truth is that radiative decay
k. + k,, results from coupling between the excited molecule and

It is also well known that the nonradiative decay rate
varies with temperature and can be significantly increased
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optical-frequency electromagnetic waves (light waves).
The characteristics of these waves depend on the opti-
cal properties of the molecule’s environment, and so
do the radiative decay rate and the natural lifetime.
Only in free space (i.e., in vacuum) does the natural
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lifetime depend on nothing but the intrinsic properties
of the fluorescent molecule.

The refractive index is defined as the ratio of the
phase velocity of monochrome light waves in vacuum
to that in the medium and represents the most import-
ant optical property of any transparent homogeneous
isotropic medium, such as a regular solvent. The refract-
ive index effect on the radiative decay rate should not
be confused with the solvatochromic effect (solvent-
dependent spectral shifts of absorption and emission
bands). The physical mechanism of the solvatochromic
effect have been studied in great detail by Ooshika,
Mataga, Kaifu, Koizumi, McRae, Lippert, and Bakhshiev
[2-6]. By coincidence, the refractive index also enters
in the expressions for solvatochromic spectral shifts.
Apart form this coincidence, there is nothing in common
between the solvatochromic effect and the refractive
index effect discussed in this article.

Indications that the radiative decay rate depends on
the refractive index of the host medium can be found in
scientific papers printed over 75 years ago. In 1926 Perrin
published a formula that involved both the radiative decay
rate and the refractive index [7]. In a footnote, Perrin wrote
that the formula had been used by different authors, but
he did not specify who obtained it first. Here is the for-
mula in its original form:

1 8mn® ,1
— = v,— [a(v) dv 4
L0 4)

Here 1/7, represents the radiative decay rate, n is the
refractive index of the host medium, c is the speed of
light in vacuum, v,, is the mean frequency of fluores-
cence emission, N is the number of fluorescent molecules
per unit volume, a(v) is the absorption coefficient at a
frequency v, and the integration is carried out over the
entire absorption band that corresponds to the lowest
excited singlet electronic state. Eq. (4) can be easily con-
verted from the absorption coefficient to the decadic
molar extinction coefficient:

L _ 8w’ 2 In(10)
6‘2 " NA

To

Je)dv &)

Here In(10) is the natural logarithm of 10, N, is Avogadro’s
number, £(v) is the decadic molar extinction coefficient
at a frequency v, and all other quantities are the same as
in Eq. (4).

Note that Eq. (5) relates the radiative decay rate of
a fluorescent molecule to its extinction coefficient
spectrum. This equation is not very accurate, especially
in the case of fluorescent molecules with large Stokes
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shifts. In 1962 Strickler and Berg came up with a more
accurate relationship [8]:

1 8mrn’

2
To c

wra ln](VlAO) 1) ? dv (6)

In Eq. (6) v;is a frequency of fluorescence emission, and
a precise definition of the mean value <Vf_3>A_v1 will be
given later; see the note after Eq. (36).

Strickler and Berg’s equation has been widely used
to obtain theoretical estimates of radiative decay rates, and
for this purpose it is perfectly suitable. It is necessary to
emphasize, however, that this equation does not express
the radiative decay rate in terms of intrinsic properties of
a fluorescent molecule. The extinction coefficient is not
an intrinsic property of a fluorescent molecule. Egs. (5, 6)
say nothing about whether 1/7, or & or both vary with n.
If € was n—invariant, then 1/, would be directly propor-
tional to n2. However, if 1/74 was n—invariant, then & would
be inversely proportional to n2. In reality, however, both
the radiative decay rate and the extinction coefficient vary
with the refractive index. The laws describing the refrac-
tive index variation of 1/1y and & can be obtained by
expressing both 1/1y and € in terms of an intrinsic prop-
erty of the fluorescent molecule rather than in terms of
each other.

The intrinsic property of a fluorescent molecule
responsible for its emission is the electric transition dipole
moment p;; for a definition, see the section about static
and transition dipole moments. An expression in terms of
| 01| for the radiative decay rate (known among physi-
cists as the spontaneous emission rate) can be found in
numerous textbooks on quantum electrodynamics and quan-
tum mechanics. Unfortunately, most of these textbooks
consider spontaneous emission in vacuum, and the expres-
sions obtained there are inapplicable to the case of a
fluorescent molecule in solution.

Expressions in terms of | i, |* for the radiative decay
rate of a fluorescent molecule in a medium can be found
in recent physical literature. Different expressions have
been derived for different physical models of the cavity
containing the fluorescent molecule. The fluorescent
molecule and the host medium cannot occupy the same
volume; thus one can always say that the fluorescent mol-
ecule is located in a cavity inside the host medium. The
shape of the cavity is usually thought to be spherical, but
it does not have to be spherical in all cases. The host
medium outside the cavity is usually treated as a clas-
sical homogeneous dielectric. The boundary conditions
at the cavity surface depend on whether the material inside
the cavity is believed to be the same as the host medium
or the same as vacuum; this results in two different kinds
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of models: the virtual cavity models and the empty cav-
ity models. The expression for the radiative decay rate
depends on the kind of model and on the shape of the
cavity. Different cavity kinds and shapes will be reviewed
later in this article in the order of increasing complexity.
Before this can be done, the basic concepts will be de-
fined in the following section, which is self-contained, so
that a scientist unfamiliar with quantum mechanics and
quantum electrodynamics should be able to understand
the logic of all the statements.

DEFINITION OF BASIC CONCEPTS

Static and Transition Electric Dipole Moments

Electromagnetic waves couple with dipole, quadru-
pole, and higher multipole moments of any system that
emits or absorbs electromagnetic radiation [9]. A cel-
lular telephone and a fluorescent molecule are two com-
mon examples of such systems. If the linear dimensions
of a system are much smaller than the wavelength (which
is true for all fluorescent molecules), then the dipole
coupling is much stronger than the quadrupole and
higher multipole couplings [9,10]. Also, the coupling of
electric moments with electromagnetic waves is much
stronger than that of magnetic moments [9,10]. For this
reason, all magnetic moments, as well as electric quadru-
pole and higher multipole moments, can be neglected
if a fluorescent molecule has a nonzero electric dipole
moment. Accurate expressions for the radiative decay
rates and extinction coefficients can be obtained by con-
sidering the coupling of just electric dipole moments
with electromagnetic waves. Exceptions from this rule
are some fluorescent metal ions with zero electric dipole
moments.

In classical (nonquantum) mechanics the electric
dipole moment of a system of charged particles is defined
as a sum over all particles of the products of each
particle’s charge and radius-vector [9]:

DN (7

Here m is the number of a particle, g, is its charge, and
7, 18 its radius-vector (a radius-vector can be thought
of as a set of three numbers x,,, y,,, Z,, that represent the
coordinates of the particle). A typical fluorescent mole-
cule consists of a number of charged particles: positively
charged nuclei and negatively charged electrons. For
example, p-terphenyl (1,4-diphenyl benzene), a small
fluorescent molecule with a very high radiative decay

rate, consists of 154 particles: 32 nuclei and 122 elec-
trons. For p-terphenyl and many other rigid molecules
it is fair to use the fixed-nuclei approximation, that is,
the approximation in which the coordinates of all the
nuclei have specific values. This approach would never
work for electrons, which are always “fuzzy,” and there-
fore their coordinates do not have specific values. This
makes it impossible to calculate the dipole moment of
a fluorescent molecule in the framework of classical
mechanics.

In quantum mechanics the state of a molecule is
described by its wavefunction W [11]. In the fixed-
nuclei approximation the wavefunction is a function of
the coordinates of all the electrons. Wavefunctions of
stationary states are of special significance for three
reasons: (i) stationary states do not change with time;
(ii) when a molecule is in a stationary state, it has a
definite value of energy E; and (iii) an arbitrary wave-
function can be represented as a linear combination of
the wavefunctions of the stationary states [11]. Each
stationary state is completely characterized by its wave-
function W; and energy E;. It is convenient to number
all singlet stationary states of a molecule in the order
of ascending energy, E,<E,<E,<.... All electric
dipole moments of a molecule can be defined in terms
of its stationary-state wavefunctions [11]:

ii= [[.] Y i Vdx dy dz..dx,dy,dz, ... (8)

Here W;* is the complex conjugate wavefunction of sta-
tionary state j, W; is the wavefunction of stationary state
i, L is defined in Eq. (7), and the integration is carried
out over every coordinate of every electron (here elec-
tron coordinates play the roles of integration variables
rather than the numbers that define a specific location of
the electron).

Because the dipole moment on the left side of Eq.
(8) has two indexes: j and i, Eq. (8) actually defines
the elements of a matrix known as the matrix of the
electric dipole moment. The diagonal matrix elements
(the elements with j = i) represent static dipole moments
of the molecule in different stationary states. For exam-
ple, poo is the static (permanent) dipole moment of
the molecule in its ground state (i = 0). If the mole-
cule is nonpolar, then oo = 0. For a polar molecule
oo # 0. The static dipole moment [;; of the lowest
singlet excited state (i = 1) may differ from that of the
ground state. If u;; # [go, then the absorption spec-
trum and the fluorescence emission spectrum of the
molecule vary with the solvent polarity; such molecule
is called solvatochromic. If fu;; =g, then the mole-
cule is not solvatochromic.
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Unlike the diagonal matrix elements, which are all
static, every off-diagonal matrix element fi; (j # i) oscil-
lates at a frequency [11]:

W = ©)

and can couple only with an electromagnetic wave that
has the same frequency (note, that the circular frequen-
cies denoted by w are 27 times greater than the cyclic
frequencies denoted by v). In Eq. (9) % is Planck’s con-
stant divided by 2, and o, is called the transition fre-
quency between the stationary state i and the stationary
state j [11]. The corresponding off-diagonal matrix
element fi; is called the transition dipole moment
between the stationary state i and the stationary state j.
For any matrix element the last index (i) always corre-
sponds to the initial state, and the first index (j) corr-
esponds to the final state. The probability of a radiative
transition j<—i is determined by the moment fi; and by
the characteristics of electromagnetic waves. All trans-
ition dipole moments represent intrinsic properties of the
fluorescent molecule, which follows directly from their
definition in Eq. (8). The radiative decay rate is essen-
tially the rate of radiative transition 0«1, therefore it
is determined by ;. The extinction coefficient for the
lowest-energy absorption band (transition 1<-0) is de-
termined by fi;o. From the fundamental properties of
Hermitian operators [11] it follows that the squared mag-
nitudes of both transition moments are equal:

|f‘«10|2 = |f’~01‘2 (10

This fundamental relationship between the off-diagonal
matrix elements responsible for the absorption and emis-
sion is in the basis of the relationships in Egs. (4-6).
There are no relationships between off-diagonal and
diagonal matrix elements; therefore the ability of a mol-
ecule to absorb and emit light has nothing to do with
its polarity or solvatochromism. For example, benzene
is nonpolar, nonsolvatochromic, its extinction coefficient
and radiative decay rate are low. p-Terphenyl is also
nonpolar and nonsolvatochromic, but its extinction
coefficient and radiative decay rate are high. Coumarine
is polar, solvatochromic, its extinction coefficient and
radiative decay rate are high. Phenol is also polar and
slightly solvatochromic, but its extinction coefficient and
radiative decay rate are low.

Electromagnetic Field Oscillators

Fluorescent molecules absorb and emit photons.
Photons are strictly defined in quantum electrodynamics, and
the definition is based on the concept of electromagnetic
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field oscillators [12]. Probabilities of absorption and emission
depend on the amplitudes of electric field oscillations. The
probability of emission is also directly proportional to the
density of field oscillators on the energy scale. In unlim-
ited space the density is infinite, which makes it difficult
to calculate the probabilities of radiative transitions. The
problem is usually resolved by confining electromagnetic
radiation to a box of a finite volume V. The actual value
of V is not important, because it always cancels out in ex-
pressions for transition probabilities. The only limitation on
the dimensions of the box arise from the condition that the
closest wall of the box must be more than 1/(2Av) away
from the fluorescent molecule, where Av denotes the width
of the corresponding absorption or emission spectrum on
the wavenumber scale (for details see the discussion of dis-
tance cutoff for medium effects). For a typical fluorescent
molecule 1/(2AvD) is of the order of 1 wm; therefore the
smallest box can be as small as about 10 pm X 10 wm X
10 wm. There is no upper limit on the size of the box. The
number of field oscillators with frequencies not exceeding
o in the box will be denoted N,,. If the box contains one
homogeneous isotropic transparent medium of a refractive
index n, then

3.3
Vrn'w

- 23
3m°c

N, (11)

The density of field oscillators per unit energy is
defined as the derivative of N, with respect to photon
energy:

oN,,
Jhw

plw) = (12)

While taking the derivative, it is important to take into
account the frequency dispersion of the refractive index;
this yields

Vilw®

whclu

plw) = (13)
Here u denotes the group velocity of light waves in the
medium [13],

(o)
u=cln+ o— (14)
Jdw

Eq. (13) gives the density of field oscillators in any
isotropic homogeneous transparent medium of macro-
scopic dimensions. Regular transparent liquids, such as
water or cyclohexane, satisfy all these requirements. The
presence of microscopic foreign particles, such as fluor-
escent molecules, protein molecules, small vesicles, or
microscopic metal particles, has little effect on the field
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oscillator density if the total volume occupied by these
particles is very small as compared to V, the volume of the
box. If two or more media of macroscopic dimensions,
for example, a microscope cover glass and immersion
medium, fill the box, then Eq. (13) can be applied to the
partial volumes occupied by different media, and then
the results can be added up.

Unlike the density of field oscillators, which is a prop-
erty of the entire box, and therefore has the same value at
every point inside the box, the amplitude of electric field
oscillations is not expected to be the same at every point
inside the box [14,15]. If the box contains an interface
between two media, then the waves reflected off the interface
interfere with the incident waves, which produces a spatial
variation in the amplitude of electric field oscillations.
However, if the box contains no interfaces and cyclic bound-
ary conditions are chosen, then the macroscopic electric
field has a constant oscillation amplitude everywhere inside
the box. The constant amplitude results in simple deriva-
tion of expressions for the probabilities of radiative transi-
tions. Although the final expressions for these probabilities
are independent of the choice of the box dimensions and
boundary conditions, one can certainly benefit from the
simplification of the intermediate steps. This can be achieved
by excluding all interfaces from the box. For example, con-
sider a fluorescent molecule separated by 1 mm from a
cuvette wall. If a 3 mm X 3 mm X 3 mm box centered at
the molecule is chosen, then the interface between the sol-
vent and the cuvette wall material will be inside the box.
Choosing a 1 mm X 1 mm X 1 mm box centered at the
molecule eliminates this inessential interface and realizes
the desired simplification. However, if the distance from
the cuvette wall was 0.1 wm rather than 1 mm, then this
trick would not work, because every wall of the box must
be more than 1/(2Av) away from the fluorescent mole-
cule, for details see the discussion of distance cutoff for
medium effects.

If the box contains no interfaces and the amplitude of
macroscopic electric field oscillations is constant, then the
amplitude can be expressed from simple normalization con-
ditions. The normalization conditions are different in the
case of spontaneous emission and in the case of induced
transitions, such as absorption and stimulated emission. In
the case of spontaneous emission the amplitude must be
normalized to one photon in the box:

CN = macr (2 fio
| prmaerp = 22 15
e = 2 (15)

On the left-hand side of Eq. (15) is an expression for the
energy density in terms of the amplitude of the macro-
scopic electric field oscillations; the expression remains

valid in the case of dispersive media, see §80 and
Eq. (83.9) in [13]. On the right-hand side the energy den-
sity is expressed as the ratio of the energy of one photon
to the box volume.

In the case of an induced transition, the amplitude
of macroscopic electric field oscillations must be nor-
malized to the energy flux density in the inducing radi-
ation. If the inducing radiation intensity is denoted / and
expressed in photons per unit time per unit area, then the
normalization condition is

% > I = hol (16)
On the left-hand side of Eq. (16) there is an expression
for the energy flux density in terms of a sum over all field
oscillators of the squared amplitudes of the macroscopic
electric field oscillations; the expression remains valid in
the case of dispersive media, see §80 and Eq. (83.11)
in [13]. On the right-hand side the energy flux density is
expressed as the product of the energy of one photon and
photon flux density.

This last paragraph is intended only for physicists.
Note, that the expressions for the energy density in
Eq. (15) and energy flux density in Eq. (16) differ from
those in reference [13] in two ways. First, in Egs. (15,
16) the refractive index has been substituted for the
square root of the ratio of the dielectric permittivity to
the magnetic permeability; this substitution is justified
because at any frequency within the optical range the
magnetic permeability equals unity. Second, in the
denominator of Eqgs. (15, 16) there is 2 instead of 8w
in the corresponding Eqs. (83.9, 83.11) in [13]. This
stems from the difference in the definitions of plane
monochromatic waves: here a plane monochromatic wave
is defined as a sum of two terms containing e ' and
et same as in Ref. [16], while in [13] it is defined as
one half of the sum. The terms containing e~ and e
directly correspond to the operators of photon annihila-
tion and creation [12], and this explains why we do not
want them to be multiplied by 1/2.

Spontaneous Emission

The rate at which excited molecules emit photons
varies with the intensity of the inducing electromagnetic
radiation; however, when the intensity approaches zero,
the emission rate approaches a nonzero limit. This lim-
iting rate, expressed in photons per unit time per one
excited molecule, is usually called the spontaneous emis-
sion rate and denoted by the capital gamma (I"). Einstein
called the same quantity coefficient A for spontaneous
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emission [17]. In the field of fluorescence spectroscopy
the same quantity is also known as the radiative decay
rate or the reciprocal of the natural lifetime:

U' = Aginstein = kr = l (17)
To
Quantum-mechanical theory of transitions under the
action of a periodic perturbation [11], which is also known
as Fermi’s golden rule, gives the following expression
for I' in the case of electric dipole coupling [14, 16]:

<EZ“‘ ‘I |2>mp<w> (18)

Here (...),, denotes averaging over all field oscillators
with the frequencies equal to w, w equals the absolute
value of the transition frequency o1, Wy, and [y, are
defined in Egs. (8,9), EYI, is the amplitude of the local
electric field oscillations where the fluorescent molecule
is located, the dot denotes a scalar product of the two
vectors, and p(w) is defined in Eq. 12.

If the system is isotropic on both macroscopic and
microscopic levels, then averaging over all field oscil-
lators is a trivial task. In any system isotropic on the
microscopic level

lnc f E:;acr ( 1 9)

where f is a scalar factor, the actual value of which
depends on the cavity model; see later in this article. In
any system isotropic on the macroscopic level the direc-
tion of the vector E5,*" is completely random, thus

(s, -

|E§“,“C’|zcan be expressed from Eq. (15) and substituted in
Eq. (20):

f [ED?| i[> (20)

oy 21 hufw
<|Efp‘ 'M01|2>m = W\Modz Q21

The latter expression and the expression for p(w) from
Eq. (13) can be substituted in Eq. (18); this gives

4f nw’
= 356 |M01| (22)

Note, that the box volume V that entered in the
numerator in Eq. (13) and in the denominator in Eq. (21)
has canceled out in the final expression for the spontan-
eous emission rate, exactly as it was promised earlier in
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this article. What is more important, the group velocity
u that entered in the denominator in Eq. (13) and in the
numerator in Eq. (21) has also canceled out. This result
was explicitly brought up in Ref. [18], and it has a very
important implication for fluorescence in dispersive
media. High dispersion of the refractive index is expected
for any medium in the spectral range near a strong ab-
sorption band (here the absorption band of the host
medium and not of the fluorescent molecule is meant)
[13]. CS,, benzene, and other aromatic solvents are highly
dispersive in the visible and, especially, in the near-UV
spectral range. The density of field oscillators p(w) can
increase severalfold in a highly dispersive medium.
Because the fundamental expression for the spontaneous
emission rate contains p(w), see Eq. (18), it is tempting
to conclude that the spontaneous emission rate can be
severalfold higher in a highly dispersive medium. The
conclusion is false, because the group velocity u, which
represents a quantitative measure of the refractive index
dispersion, did not enter in the final expression for I,
see Eq. (22). Thus the radiative rate in a medium with
a high density of field oscillators is exactly the same as
in a medium with a low density of field oscillators if
both media have the same refractive index n. Out of all
quantities in Eq. (22) only f and n depend on the char-
acteristics of the host medium, and fis a function of n,
see the discussion of cavity models.

Absorption and Stimulated Emission

Absorption and stimulated emission are in essence
electronic transitions induced by electromagnetic radi-
ation. When exposed to the radiation of an appropriate
frequency, ground-state molecules make transitions to
the excited state (absorption), and excited-state molecules
make transitions to the ground state (stimulated emis-
sion). The rates of these processes in photons per unit
time per 1 molecule will be denoted k;,;. Quantum-
mechanical theory of transitions under the action of a
periodic perturbation [11], which is also known as
Fermi’s golden rule, gives the following expression for
k.4 in the case of electric dipole coupling:

Kina = E|Ei§’5‘alo\26<hm—ﬁww> (23)

osc

Here 0% denotes summation over all field oscillators, Efj{;
is the amplitude of the local electric field oscillations of
the inducing wave at the location of the fluorescent mol-
ecule, [L;p and w;, are defined in Egs. (8,9), the dot
denotes a scalar product of two vectors, and (. . .) is

Dirac’s delta-function.
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If the local environment of the fluorescent molecule
is isotropic, then

El = fEma (24)

where fis a scalar factor, the actual value of which depends
on the cavity model, see later in this article. If, in addition
to this, the inducing electromagnetic radiation is linearly
polarized, and ¥ denotes the angle between the electric

macr

vector E,-m, and the transition moment [L;,, then
loc > 12 _ 2 20> 2.2
| Eina * Horol™ = f7 | Eina”'|” [0 "cos™(®)  (25)

The expression on the right-hand side of Eq. (25) can be
substituted for |E,l,‘l’§ “fi1o]? in Eq. (23).

Then 3, | :‘%qu can be expressed from Eq. (16) and
substituted in the resulting equation. This yields

Amiwf?

cn

Kina = [iol* 3o — fiwyg) cos’(H) 1 (26)
Eq. (26) shows that the rates of induced transitions (k;,;)
are directly proportional to the intensity of the inducing
radiation (7). It is convenient to introduce the coefficient
of proportionality

Amiof?

cn

o(w) = [io]® 3(hw — Awyg) cos* (D) (27)

kig= o () 1 (28)

The expression for o(w) in Eq. (27) contains Dirac’s
delta-function, which makes it inadequate for practical
applications. The delta-function can be eliminated by inte-
grating both sides of Eq. (27) over any frequency interval
(Wmin, Wmax) containing the transition frequency w,,. For
reasons that will become evident in the next section, it is
convenient to divide both sides of Eq. (28) by w before
integration, which yields

| Buo|* cos*(9) (29)

ficn

Effect of Nuclear Vibrations

Note, that throughout the previous two sections it
was implied that a fluorescent molecule emitted and
absorbed radiation of only one frequency, specifically,
the electronic transition frequency wj,. In the fixed-nuclei
approximation the molecule is not expected to absorb or
emit at any other frequency. It is the motion of the nuclei
that broadens the absorption spectrum and the emission
spectrum. The motion of the nuclei can be accounted
for by the use of Franck-Condon factors, which represent

the fractional contributions from transitions to different
final states of nuclear motion. A perfect definition of
Franck-Condon factors and description of their proper-
ties can be found in Herzberg’s book [10], however,
Herzberg called Franck-Condon factors the overlap
integrals.

To account for nuclear vibrations, the expression
for the probability of spontaneous emission from Eq. (22)
needs to be averaged over all fluorescence emission
frequencies o using Franck-Condon factors as the
weights:

4f2no)3 >
[=("—— lio| 30
< 34 ‘M01| 1o (30)

Here (...);,denotes Franck-Condon—weighted averaging.
Frequency-invariant factors can be taken out of {...)..
Strictly speaking, both the refractive index n and the local
field correction factor f vary with frequency, but in those
cases in which the difference between the values of n at
the opposite ends of the emission spectrum does not
exceed a few percent, the frequency variation of n and f
(which is a function of n; see the description of cavity
models) can be neglected. This yields

_4f°n

= %| ot |2 <(1)3>fcf (3D

The value of {(w?);,; can be calculated from the shape
of the emission spectrum. Because the emission at any
frequency w is proportional to the product of w? and the
corresponding Franck-Condon factor, the envelope of
Franck-Condon factors for emission is equal to the emis-
sion spectrum multiplied by o 3. If F(») is the emis-
sion spectrum corrected to photons per unit frequency
range, then w >F,(w) represents the envelope of Franck-
Condon factors for emission. This yields the following
expression for (%)

_ [o'lo Fy(@)ldo  [F(@)do
a f[w73Fm(w)]dw a fw73Fm(w)dw

<w3>fcf

All integrals in Eq. (32) are definite and the integration
is over the entire emission spectrum.
Franck-Condon—factor weighted averaging over all
absorption frequencies (w) must be performed on the
expressions involving the probability of absorption. The
final expression in this line is Eq. (29). Averaging of both
sides of Eq. (29) over all w is a trivial task, because nei-
ther side varies with w. The left-hand side of Eq. (29) is
a definite integral. The right-hand side of Eq. (29) does
not contain w explicitly, and the frequency variation of n
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and f can be usually neglected. Thus the averaging leaves
Eq. (29) practically unchanged:

f ag(w)

422
7 4y = 4TS
w

ficn

[ cos’@)  (33)

The only difference between Eq. (29) and Eq. (33) is
that in the former the interval (wyin, ®max) Must con-
tain the electronic transition frequency w;o, and in the
latter the interval (., ®Wm.c) Must contain the entire
absorption band corresponding to the electronic tran-
sition 1<0.

EXPRESSIONS FOR PRACTICAL
APPLICATION

Radiative Decay Rate

Circular frequency w is rarely used in experimen-
tal work. Absorption and emission spectra are usually
recorded as a function of wavelength A or wavenum-
ber v. For this reason the expression for the radiative
decay rate from Eq. (31) should be converted from
to v:

AL
k=T = ?\ M01| (v >fcff n (34)

Here / is Planck’s constant, |fio,|” is defined in Eq. (8),
(?)M is the Franck-Condon—factor weighted average
cube of the emission wavenumber, f is the local field
correction factor (for details see the discussion of cavity
models), and 7 is the refractive index of the host medium
(solvent). Depending on whether the fluorescence emission
spectrum is expressed as a function of wavelength or
wavenumber, (53)fcf should be calculated using Eq. (35)
or Eq. (36):

. [FA()dN
3 T e——
s [N (VAN (35)
F.(9)d7
Wy = [5Gy (36)

[V F,(dv

Here F) is corrected to photons per unit wavelength range
and F, is corrected to photons per unit wavenumber or
unit frequency range; all the integrals are definite and the
integration is carried out over the entire emission spec-
trum. Note, that (v, )1, in Strickler and Berg equation,
Eq. (6), equals c3<17>ﬁf.
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Extinction Coefficient

The quantity o was introduced earlier as the coef-
ficient of proportionality between the rate (k;,;) of induced
transitions and the intensity (/) of the inducing radiation
[see Eq. (28)]. In the case of absorption, k;,, represents
the number photons absorbed by 1 molecule per unit time
and the excitation intensity / is measured in photons per
unit time per unit area; therefore the coefficient of pro-
portionality o has the units of area per 1 molecule. The
latter was the basis for the name “absorption cross section”
that was given to o during the time when the corpuscu-
lar theory of light was in favor. According to that theory,
photons were tiny bullets, the molecule was a target,
and o was the area of the target. However, according to
modern physics, a photon does not have a trajectory [12];
therefore it can neither hit nor miss a target, and the
analogy between o and target area falls apart. In light of
this, the absorption cross section ¢ is simply a coefficient
of proportionality between k;,; and 1, and it is not related
to the cross section of the molecule or any of its com-
ponents.

For a dilute isotropic solution containing N absorbing
solute molecules per unit volume in a transparent solvent,
the absorption coefficient o equals the product of N and
(o), where (o) denotes the mean absorption cross section
(averaged over all possible orientations of the solute
molecules with respect to the direction of polarization of
the light wave):

a = N{o) (37)

As the light wave propagates through the solution along
the axis X, its intensity decreases according to Bouguer
law

[= e (38)

From Eqgs. (37, 38) follows the relationship between the
intensity of the incident light (/) and that of the light
transmitted through the solution (/7) for a cuvette with
the path length L:

In (Iy/l;) = (o) NL (39)

Now compare Eq. (39) with Eq. (40), which serves as the
definition of the decadic molar extinction coefficient &:

10g10 (IO/IT) = <8> Cmvlar L (40)

There are three differences between Eq. (39) and Eq. (40):
(i) the logarithm is natural in the former and decadic in
the latter, (ii) the concentration of the absorbing species
is in molecules per unit volume (N) in the former and in
moles per unit volume (C,,,,,) in the latter, and (iii) the
role of the extinction coefficient is played by o in the
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former and by ¢ in the latter. If € is called the decadic
molar extinction coefficient, then o may be called the
natural molecular extinction coefficient. Thus the terms
absorption cross section and natural molecular extinction
coefficient are synonymous; both refer to o.

From Egs. (39, 40) follows a simple relationship
between o and &:

In(10)
= &
Ny

(41)

Here N, denotes Avogadro’s number (the number of mol-
ecules per mole). Note that the decadic molar extinction
coefficient € is often expressed in mol~'.dm>.cm™". Before
e can be substituted in Eq. (41), or in any other physi-
cal equation, it must be converted to consistent units. The
presence of both dm and cm in one equation is intolera-
ble in physics.

Both o and & vary with the wavelength N\ of the ex-
citing light; the functions that describe this variation will
be denoted as o(\) and &(N). The functions o(\) and
e(\) for a single molecule depend on the angle ¥ be-
tween the direction of its transition dipole moment i,
and the direction of polarization of the exciting light.
From Eq. (33) it follows that

f @dx—gl\w o) (42)

:::::

Using the relationship between o and ¢ in Eq. (41), a
similar equation can be written for &:

In (10 A 87> 2
n]f,A )’ f Qdk—ﬁlrxml”;cosz(m 43)

In Egs. (42, 43) the integration wavelength range
(Amin» Amay) must include the entire absorption band cor-
responding to the electronic transition 1 <— 0 and no other
absorption bands; & is Planck’s constant, ¢ is the speed
of light in vacuum, |fi,o|* is defined in Eq. (8), fis the
local field correction factor (for details see the next sec-
tion), and 7 is the refractive index of the host medium.
In solution different solute molecules have different
values of the angle ¥, therefore their absorption cross
sections and extinction coefficients are also different. The
experimentally measured values (o) and (&) represent
averages over all orientations of the solute molecules. For
isotropic solutions {(cos%(8)) = 1/3, which yields

f’“ <o(x>> 8w QP I

e |10 (44)

In (10 A 8
n]E’A 3 f <8( )> dn = i |l1~10‘2 r

(45)
Note that Egs. (44, 45) are valid only for isotropic solutions;
they are not valid for molecules adsorbed to surfaces, so-
lutions placed in strong electric fields (Stark effect), stretched
polymer films (Polaroid), and crystals (including protein
crystals).

Eqgs. (42-45) make it clear that none of the quan-
tities o, &, (o), or {(g) represent an intrinsic property of
a fluorescent molecule: all four quantities depend on the
parameters f and n, which represent optical character-
istics of the host medium. In addition to this, o and
& depend on the angle ¥, which changes whenever the
molecule rotates or the direction of polarization of the
exciting light is rotated. The quantities (o) and (&) rep-
resent ensemble averages rather than intrinsic proper-
ties of individual molecules.

The absorption cross section o of a single mole-
cule depends on its orientation as cos*(d), and in
isotropic solutions it covers the range from 0 to 3(c).
Likewise, & covers the range from 0 to 3(g). In some
cases this must be taken into account. However, in most
cases the difference in the extinction coefficient between
individual absorbing solute molecules of the same type
is not important. For example, if the duration of the
exciting pulse is much longer than the rotational corre-
lation time of the solute molecules, then the probabil-
ity of excitation is approximately equal for all the
molecules. In those cases in which the difference
between o and (o) and between & and (&) does not have
to be taken into account, the angle brackets are usually
omitted for notation simplicity, and the symbol ¢ is used
for the mean decadic molar extinction coefficient. This
is the case for the most part of physical and chemical
literature. In the following section no difference will be
made between o and (o) and between £ and (g); all
equations there are equally applicable to the mean val-
ues and to the values for individual molecules.

CAVITY MODELS

The relationship between the macroscopic and local
electric field depends on the geometry of the local envi-
ronment. If the local environment is isotropic, then the
relationship is

E‘:loc — fémacr (46)

where f is a scalar factor. This relationship was used in
the derivation of the expressions for both the radiative
decay rate and the extinction coefficients, and each of the
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quantities k,, o and ¢ is directly proportional to f2, see
Egs. (34, 42-45). These equations can be rewritten in a
form that emphasizes the effects of the optical properties
of the host medium:

k,=T = fnl, 47)
2

a(\) = f; ao(N) (48)
2

e(\) = f; go(\) (49)

Here 'y, o4(N), and gy(\) are completely independent of
the optical properties of the medium; expressions for these
quantities in terms of fundamental parameters can be ob-
tained by substituting f = 1 and n = 1 in Egs. (34, 42-45).
For example, here is the expression for I'y:

64

I,=——
O 3

S 123
|P~01‘ (v >fcf (50
In the following four sections, four physical models of
local environment will be considered; each model results
in its own expression for f in terms of the macroscopic
refractive index n.

Fluorescent Molecule Superimposed on Top
of an Ideal Medium

An ideal medium is continuous on the microscopic
level. If a fluorescent molecule is superimposed on top
of the ideal medium (this implies that the molecule and
the medium occupy the same volume), then the molecule
interacts directly with E""; therefore f=1and

k=T = nl, (51)
a\) = n tag\) (52)
eN) =n e\ (53)

Although it is quite obvious that this model is not real-
istic, it has been used by Forster [19] and by many other
authors.

Lorentz Virtual Cavity Model

By introducing a hypothetical (virtual) spherical
cavity with the medium both outside and inside, Lorentz
derived a relationship between the local and macroscopic
field [20]. The relationship is equivalent to Eq. (46), where

n+2

f=" (54)
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Substituting this expression for fin Eqs (47-49) yields

2 2

k,zr:<”;2>nro (55)
n+ 2\ _,

o\) = 3 noo(N) (56)
n® + 2\ 1

e\) = 3 n g\ 57

Although Eqgs. (55-57) are based on the work of
Lorentz, these equations were not invented by him, they
were introduced by other authors who applied Lorentz
local field theory to absorption [18,21-23] and to fluo-
rescence emission [18,24-34]. Note that in Refs.
[25-28,30-34] the virtual spherical cavity model is com-
pared to the empty spherical cavity model (see the next
section). The virtual spherical cavity model was also
employed to calculate the local field correction to the
rate of nonradiative resonance energy transfer [35].
Shibuya extended the virtual cavity model to the case of
an ellipsoidal rather than spherical cavity shape [36,37].

Note that applying Lorentz local field correction to
a molecule that absorbs or emits light results in a contra-
diction with an underlying assumption. In the derivation
of the relationship between the local and macroscopic
field, Lorentz made an explicit assumption that the mol-
ecule inside the cavity has the same polarizability as all
other molecules of the medium [20]. Other authors made
this assumption implicitly; for example, by writing Eq. (30)
in Ref. [36] Shibuya implicitly assumed that the polari-
zability of the medium inside the ellipsoidal cavity is the
same as if it had the refractive index of the outside
medium. Unfortunately, this assumption is not valid if the
molecule inside the cavity is not the same as the mole-
cules of the host medium. This means that in the case in
which absorption or emission is due to foreign molecules
embedded in a host medium, the virtual cavity model does
not apply.

Some authors argue that the virtual cavity model is
applicable at least in the case in which there are no for-
eign molecules and absorption and emission are due to the
molecules of the main medium [28]. This would be true
if all the molecules were not only chemically identical
but also in identical electronic states. However, absorption
and emission of light involve electronic transitions, and an
excited-state molecule does not have the same polariz-
ability as the ground-state molecule. At a near-resonance
frequency the polarizability of an excited-state molecule
is approximately equal to —a, where o denotes the
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polarizability of the same molecule in the ground state.
A molecule in transition between the ground state and the
excited state has indefinite polarizability. From this one
may conclude that the virtual cavity model is inapplicable
regardless of whether the absorption and emission are
due to foreign molecules or to the molecules of the main
medium. This does not imply that Lorentz relationship
between the local and macroscopic field is wrong; the
relationship is valid for any isotropic homogeneous medium
containing only ground-state molecules of one kind. Lorentz
studied only media of this type in his work [20].

Empty Spherical Cavity Model

In the case of a fluorescent molecule in solution,
the solvent is expelled from the volume occupied by the
fluorescent molecule. This creates a cavity, in which the
fluorescent molecule is located. It is necessary to relate
the local field in the cavity to the macroscopic field out-
side the cavity. The optical-frequency polarizability of
a fluorescent molecule in transition between the excited
state and the ground state is indefinite, thus in the frame-
work of classical field theory it is impossible to take
into account the effect of the fluorescent molecule on
the local field inside the cavity. An obvious alternative
is to ignore the effect of the fluorescent molecule on
the local field. This means that in deriving the rela-
tionship between the local field inside the cavity and
the macroscopic field outside the cavity one must assume
that the cavity is empty. Empty cavity models are
described in this and the following section.

The empty spherical cavity model is also known as
the real cavity model (in contrast to the virtual cavity model)
and Glauber-Lewenstein model, by the names of the authors
who suggested it first [15]. It is interesting that in an earlier
paper [14] Yablonovitch, Gmitter, and Bhat wrote equ-
ations that could be made identical to those of the empty
spherical cavity model by substituting n;,, = 1, but the
substitution was not made. The empty spherical cavity
model results in the following expression for the factor
fin Eq. (46),

3n®
f= Py (58)
and in the following expressions for k,, o and &:
k,.=T = (2;’:2_1>an0 (59)
3n® o
ol\) = (2’12+1> nao(N) (60)

A—(3"2 >21>\ 61
e(\) = o+ 1 n-gy(\) (61)
Eqgs. (58, 59) or their equivalents can be found in a large
number of recent publications [15,25-28, 30-34,38-40].
Egs. (60, 61) cannot be found in the literature, although
they directly follow from Eq. (58). Apparently, the authors
who used the empty spherical cavity model to calculate
the spontaneous emission rate were not interested in the
absorption cross section and the extinction coefficient.
On the contrary, the interest in medium effects on the
spontaneous emission rate is so high that hundreds of
papers on this subjects have recently been published; only
some of them are quoted here. Perhaps the most general
study of spontaneous emission in condensed media was
presented by Tkalya [39,40], who derived equations not
only for electric dipole emission, but also for magnetic
dipole emission, electric and magnetic quadrupole emis-
sions, and electric and magnetic emissions of an arbitrary
multipolarity. All equations in this article apply to electric
dipole emission only; this was explicitly stated earlier in
this article.

Empty Ellipsoidal Cavity Model

Lorentz developed his theory for atoms in a cubic
crystal lattice. The choice of the spherical cavity shape
is adequate for a cubic lattice. The spherical cavity shape
is also adequate for an atom in an atomic gas, such as
helium, because a helium atom has a spherical symme-
try. Polyatomic fluorescent molecules do not have spher-
ical symmetry in the fixed-nuclei approximation. If a
polyatomic molecule is allowed to rotate freely, then its
complete wavefunction (including both electronic and
nuclear coordinates) may still have spherical symmetry
[11], and in this case the choice of the spherical cavity
shape is still adequate. However, if for a polyatomic
fluorescent molecule in solution the orientation-dependent
part of the energy of the solute—solvent interaction is
comparable with or greater than k7, then the rotation of
this molecule is not free and the choice of the spherical
cavity shape is inadequate.

Not every cavity shape is consistent with the elec-
tric dipole approximation. If the shape is neither spher-
ical nor ellipsoidal, then the electric field inside the cavity
is not uniform [13], and this means that the effects of
quadrupole and higher multipole moments are not expected
to be much smaller than the effect of the dipole moment.
Thus only spherical and ellipsoidal cavity shapes lead to
simple analytical expressions for the radiative decay rate,
absorption cross section, and extinction coefficient. The
idea of using ellipsoidal instead of spherical cavity shape
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in connection with molecules that absorb and emit light
belongs to Shibuya [36,37]. Unfortunately, Shibuya’s work
is based on the virtual cavity model; Shibuya did not
realize that applying that model to molecules that absorb
or emit light results in a contradiction with an underlying
assumption (see discussion of the Lorentz virtual cavity
model). The ellipsoidal cavity shape can be also used in
combination with the empty cavity model; this combin-
ation is described below.

An ellipsoid has three principal axes. The factor f in
Eq. (46) has a different value for the electric fields paral-
lel to each principal axis [13]. Generally speaking, unless
the electric field is parallel to one of the principal axes,
Eq. (46) is not valid. In applications related to electronic
transition probabilities, only the component of the electric
field parallel to the corresponding transition moment [i; is
of importance; therefore, if [i;; is parallel to any one of the
principal axes, then a limited use of Eq. (46) is justifiable,
and the value of the factor f in this case is given by the
expression [13,16,41]

2
n

= 2
A —Lyn*+1L,

S (62)

Substituting this expression for f'in Eqs. (47-49) yields

nS
k=T = r 63
(1 —Lyn*+ L, " ©3)

3

o) _ 5 0o\ (64)

[(1 = Lyn” + L]

o

}’13

(1 —Lyn” + L,

e(\) = €o(N) (65)
An expression equivalent to a combination of Eq. (63)
with Eq. (50) can be found in Ref. [16].

For L, in Egs. (62-65) one should substitute Ly, Ly,
or Lz, depending on whether the transition moment [i; is
parallel to the axis X, Y, or Z. Parameters Ly, Ly, L, can
have any values between 0 and 1, subject to a constraint
Ly + Ly + L, = 1. The actual values of Ly, Ly, L, depend
on the length of the ellipsoid semiaxes ay, ay, az; the great-
est L always corresponds to the shortest semiaxis, and the
smallest L always corresponds to the longest semiaxis.
Specific values of Ly, Ly, L, can be obtained by numeri-
cal integration [16,41]:

ax ay az ds

2\/(s + a;2()3 (s + a%) (s + a%)

(60)

L.=J
0

Similar expressions for Ly and L, can be obtained from Eq.
(66) by cyclical rotation of all subscripts, X > Y — Z — X.
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Fig. 1. Solvent refractive index variation of the radiative decay rate
k.= I'. The ratio I'/T'y is plotted on the logarithmic scale. I'j is the
limit of I at n — 1. All curves are theoretical. Solid lines represent
the empty ellipsoidal cavity model, Eq. (63); the value of the parameter
L,, for each curve equals one sixth of the number in the curve label.
The curve labeled “2” also represents the empty spherical cavity model,
Eq. (59). Broken line represents the virtual spherical cavity model,
Eq. (55). Dotted line represents the law I' = 'y n? that corresponds
to no physical model.

For the special case of a sphere Ly = Ly = L, = 1/3;
substituting this value for L, in Egs. (62—-65) makes these
equations equivalent to Egs. (58-61). This shows that the
empty spherical cavity model, also known as the real cav-
ity model and Glauber-Lewenstein model, represents a
special case of the empty ellipsoidal cavity model.

Graphical Review of Cavity Models

Variation of the radiative decay rate with the sol-
vent refractive index for different cavity models is
depicted in Fig. 1. Variation of the absorption cross sec-
tion o and the extinction coefficient € for the same models
is depicted in Fig. 2. The refractive index scale is loga-
rithmic and covers the range from the refractive index
of vacuum (n = 1.00) to that of diamond (n = 2.42 at
589 nm). The value of the radiative decay rate (Fig. 1)
or the extinction coefficient (Fig. 2) is divided by the cor-
responding value in vacuum and is plotted on a log-
arithmic scale. The solid lines in each figure represent
the empty ellipsoidal cavity model; different curves
correspond to different values of L,,. The value of L, for
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Fig. 2. Solvent refractive index variation of the absorption cross—
section o and extinction coefficient . The ratio o/o = &/g, is plot-
ted on the logarithmic scale. oy and g, are the limits of ¢ and & at
n — 1. All curves are theoretical. Solid lines represent the empty
ellipsoidal cavity model, Egs. (64, 65); the value of L, for each curve
equals one sixth of the number in the curve label. The curve labeled
“2” also represents the empty spherical cavity model, Eqs. (60, 61).
Broken line represents the virtual spherical cavity model, Egs. (56, 57).
Dotted line represents the law ¢ = gy, € = g, that corresponds to no
physical model.

each curve equals one sixth of the number in the curve
label. The curve labeled “2” corresponds to L, = 1/3;
therefore this curve also represents the empty spherical
cavity model. The curve labeled “0” corresponds to
L,= 0; if this value is substituted in Egs. (63-65), then
these equations become equivalent to Egs. (51-53); there-
fore the curve labeled “0” also represents the model of
a fluorescent molecule superimposed on top of an ideal
medium. The virtual spherical cavity model is represented
by the broken lines in Figs. 1 and 2. Finally, the dotted
lines in each figure represent the functions I' = [yn?,
& = gy. These functions do not follow from a physical
theory, but they have been widely used [42—45].

The theoretical curves in Figs. 1 and 2 can be com-
pared to experimental data, and based on the results of
this comparison the model that provides the best fit can
be selected. Note that on a logarithmic plot, where the
vertical axis represents log(I'/T"y), log(a/ay), or log(e/ey),
the experimental data can be usually shifted up or down
by redefining the value of the constant I'y, oy, or g
(these constants are usually obtained by extrapolation of

the experimental data to n = 1). Thus the value of the
Y-intercept does not matter when experimental data are
compared to a theoretical curve; the only thing that mat-
ters is the slope. The slope of a log(I'/T'y) versus log(n)
plot is the same as the slope of a log(I") versus log(n) plot.
Likewise, the slopes of log(c/c,) versus log(n) and
log(e/ey) versus log(n) plots are the same as the slopes
of log(o) versus log(n) and log(e) versus log(n) plots. The
slopes of the theoretical curves corresponding to the four
physical models described above can be calculated using
the following expressions, in which +1 should be sub-
stituted for =1 if Y = I" and —1 should be substituted for
*lifY=corY =g

e
= ®
T

olog®) _ . 4Lu2 70)

dlog(n) A-Lyn*+1L,

Eq. (67) corresponds to the model of a fluorescent
molecule superimposed on top of an ideal medium (see
discussion of fluorescent molecule imposition on an ideal
medium). For this model the slope is constant and equals
+1 in the case of the log(I") versus log(n) plot and —1 in
the case of the log(e) versus log(n) plot.

Eq. (68) corresponds to the virtual spherical cavity
model. For this model the slope is not constant, and it
increases with the refractive index. For a refractive index
close to that of vacuum (n = 1), hexane (n = 1.375 at
589 nm), and CS, (n = 1.632 at 589 nm) the corre-
sponding values of the slope are +2.333, +2.944, and
+3.285 in the case of the log(I") versus log(n) plot and
+0.333, +0.944, and +1.285 in the case of the log(e)
versus log(n) plot.

Eq. (69) corresponds to the empty spherical cavity
model. For this model the slope is not constant, and it
decreases with the refractive index. For a refractive index
close to that of vacuum (n = 1), hexane (n = 1.375 at
589 nm), and CS, (n = 1.632 at 589 nm) the correspond-
ing values of the slope are +2.333, +1.837, and +1.632
in the case of the log(I") versus log(n) plot and +0.333,
—0.163 and —0.368 in the case of the log(e) versus
log(n) plot.
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Eq. (70) corresponds to the empty ellipsoidal cav-
ity model. For this model the slope depends on the value
of the ellipticity parameter L,,. For L, = 1/3 the slope
is the same as in the case of the empty spherical cav-
ity model. For L, = 0 and L, = 1 the corresponding
values of the slope are +1 and +5 in the case of the
log (I') versus log(n) plot and —1 and +3 in the case
of the log(e) versus log(n) plot. Any slope between +1
and +5 for the log(I") versus log (n) plot can be achieved
by selecting the appropriate value of L. Likewise, any
slope between —1 and +3 for the log(e) versus log(n)
plot can be achieved by selecting the appropriate value
of L.

EXPERIMENTAL EVIDENCE

There are very few experimental studies aimed specif-
ically at discriminating between different cavity models
[25,27,33]. In two of them the results confirmed the empty
spherical cavity model [25,27]; these results are shown in
the following section. In the third study the radiative decay
rate was found to depend not solely on the refractive index,
but also on some other property of the solvent [33]; pos-
sible explanations of this result are discussed later. Valuable
experimental data regarding the solvent refractive index
effect on the radiative decay rate can be also found in
earlier publications [42,44,46], the authors of which were
unaware of the physical theory of this effect. It will be
shown that these data are in agreement with either the
empty spherical cavity model or the empty ellipsoidal cav-
ity model.

There are also a number of experimental studies of
the solvent refractive index effect on the radiative decay
rate, where the fluorescent molecule was inserted in a
microscopic object, such as a lipid membrane [47-51],
a reverse micelle [52-54], or a protein globule [16], and
the microscopic object was immersed in the solvent of var-
iable refractive index. The theoretical models describing
the refractive index variation of the radiative decay rates
in these systems are not identical to the models for a
fluorescent molecule immersed directly in the solvent;
therefore the results of experimental studies [16,47-54]
cannot be used to discriminate among various cavity
models.

Chelated Eu®* in Non-Hydrogen-Bonding Solvents

In Ref. [25] the lifetime of the excited °Dj state of
a chelated Eu** ion in Eu®*—hfa—topo complex was meas-
ured in a series of apolar hydrocarbons and fluorocarbons.
The radiative lifetime T, (also known as the natural life-
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Fig. 3. Radiative lifetime of Eu**~hfa—topo dissolved in apolar
hydrocarbons and fluorocarbons, as a function of the solvent refractive
index. Reproduced from Ref. [25] with permission from the American
Physical Society and from Dr. G. L. J. A. Rikken. Experimental data
are shown by circles with error bars. Broken line represents the model of
a fluorescent molecule superimposed on top of an ideal medium, Eq. (51).
Dotted line represents the virtual spherical cavity model, Eq. (55). Solid
line represents the empty spherical cavity model, Eq. (59).

time) was calculated from the values of the measured
lifetime T and the quantum yield m. The quantum yield
was close to unity (e.g., in toluene m = 0.95 = 0.05);
therefore the values of 7y and 7 differed only slightly. In
Fig. 3 the radiative lifetime is plotted versus the solvent
refractive index. Note that although the vertical axis is
labeled T, it actually represents the radiative lifetime 7.
The experimental data are shown by circles with error
bars, and the lines represent the best fits to the experi-
mental data by three different models. It is not difficult
to see that the empty spherical cavity model (solid line)
gives the best fit to the experimental data.

In Ref. [27] the lifetime of the excited D, state of
a chelated Eu* ion in Eu(fod); complex was measured
in supercritical CO,. By changing pressure, the refractive
index of a liquid heated just slightly above the critical
temperature could be continuously varied over a wide
range, starting from low values typical for gases and
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ending with high values typical for common (nonsuper-
critical) liquids. Thus a supercritical liquid was a perfect
solvent for a study of the refractive index effect. In
addition to this, the nonradiative decay rate for the D,
state of Eu(fod); complex in liquid CO, is much smaller
than the radiative decay rate; therefore the radiative life-
time Ty was assumed to be equal to the measured lifetime
7 [27]. In Fig. 4 the ratio of the radiative lifetime in
supercritical CO, to that in vacuum is plotted versus the
solvent refractive index (the value of T3"*° was a result
of extrapolation rather than direct measurement).
Experimental data are shown by circles, squares, and
triangles. The lines represent the best fits to the exper-
imental data by three different models. The experimen-
tal data unambiguously confirm the empty spherical cav-
ity model (solid line).

Chelated Eu®* in Hydrogen-Bonding Solvents

In Ref. [33] the lifetime of Eu(fod); complex was
measured in a homologic series of simple alcohols. The
results were found to be inconsistent with both virtual
spherical cavity model and empty spherical cavity model.
All theoretical models predict a monotonic increase of

1.0 1.1 1.2 1.3
refractive index

Fig. 4. The ratio of the radiative lifetime of Eu(fod); dissolved in
supercritical CO, to that in vacuum, as a function of the solvent refractive
index (the value of Tz** was a result of extrapolation rather than direct
measurement). Reproduced from Ref. [27] with permission from the
American Physical Society and from professor A. Lagendijk.
Experimental data obtained in different series of measurements are
shown by circles, squares, and triangles. Dotted line represents the
model of a fluorescent molecule superimposed on top of an ideal
medium, Eq. (51). Broken line represents the virtual spherical cavity
model, Eq. (55). Solid line represents the empty spherical cavity model,
Eq. (59).

the radiative decay rate with the refractive index (Fig. 1),
whereas the experimental data did not comply with this
prediction. Furthermore, the data obtained with deuter-
ated alcohols CH; (CH,),,OD did not fall on the same
line as the data obtained with common (protonated)
alcohols CH;3(CH,),,OH. This result can be explained
by the effect of hydrogen bonding. Note that if the fluor-
escent solute forms hydrogen bonds with the solvent, then
it cannot rotate freely. For a molecule that neither has
spherical symmetry nor can rotate freely, the choice of
the spherical cavity shape is inappropriate. If we assume
for instance that the cavity is ellipsoidal, then the radia-
tive decay rate will depend not only on the refractive
index of the solvent, but also on the ellipticity parame-
ter L,,. This parameter can have different values depending
on the specific solvent; therefore it is not surprising that
the experimental points in Ref. [33] did not fall on a
single line. In the case of non-hydrogen bonding sol-
vents, such as hydrocarbons and fluorocarbons [25] or
CO, [27], the cavity was spherical and the ellipticity
parameter L, had a constant value of one third, which
explains why the experimental points there fell on one
line. The explanation represented here is somewhat dif-
ferent than the one proposed by the authors of Ref. [33].
The conclusion of the authors was that the deviations
from the empty spherical cavity model were “due to the
subtle changes in the symmetry of the europium complex
when dissolving it in different alcohols.” Indeed, this is
a possible explanation; however, it is equally possible
that the spherical symmetry of the cavity and not the sym-
metry of the solute was destroyed in hydrogen-bonding
solvents.

9-Cyanoanthracene in Methylcyclohexane

In Ref. [42] the excited-state lifetimes of five
anthracene derivatives were measured in methylcyclo-
hexane. The refractive index of the solvent was varied
from 1.4206 to 1.5473 by applying hydrostatic pressure
between 0.1 MPa and 700 MPa. It is extremely difficult
to measure the quantum yield of a solution in a high-
pressure optical vessel. The authors of Ref. [42] selected
the compounds with high quantum yields in methyl-
cyclohexane and assumed that the quantum yields were
close to unity. The assumption was verified by cooling
solutions of the anthracene derivatives to 77 K. Based on
this assumption, the radiative decay rate I" can be calcu-
lated as 1/7, where T was the measured lifetime. The orig-
inal data are available in the numerical format in Table I
of Ref. [42]. The authors of Ref. [42] did not fit their
data by a model function based on a physical theory; the
fitting was done specifically for this article, and the best
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Fig. 5. The radiative decay rate of 9-cyanoanthracene dissolved in
methylcyclohexane at hydrostatic pressures from 0.1 to 700 MPa, as a
function of the solvent refractive index. Circles represent experimental
data from Table I of Ref. [42]. Error bars correspond to *1.5% errors,
as specified in the footnote to Table I of Ref. [42]. Broken line: the best fit
with the virtual spherical cavity model, Eq. (55). Solid line: the best fit
with the empty spherical cavity model, Eq. (59). Dotted line: the best
fit by the empirical function I =['yn?, which corresponds to no physical
model, but was suggested in Ref. [42].

fits are shown in Fig. 5. The data in Fig. 5 represent the
radiative decay rate of 9-cyanoanthracene, which was
selected out of the five anthracene derivatives because it
appears to have the highest quantum yield. The empty
spherical cavity model (solid line) results in a better fit,
not only compared to the virtual spherical cavity model
(broken line) but also compared to the empirical func-
tion I' = T’y n? (dotted line).

The difference between the solid line and the dotted
line in Fig. 5 is quite small, and both lines fit the exper-
imental data within the specified errors. One may want
to increase the range of the refractive index variation so
that the model curves would diverge more. Because the
lifetime of 9-cyanoanthracene was also measured in a jet-
cooled gas at low pressure [46], where n = 1; this result
can be added to the experimental points in Fig. 5. In
Fig. 6 the data from Fig. 5 are combined with the gas-
phase result from Ref. [46]. The gas-phase result (square)
is consistent with both the empty spherical cavity model
(the solid line) and the empirical function I' = I'yn? (the
dotted line), but it is clearly inconsistent with the virtual
spherical cavity model (the broken line). To experimen-
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tally disprove the empirical function I" = I'yn%, one would
have to use solvents with the refractive index values
over 1.8, because only for n > 1.8 this empirical func-
tion I' = 'yn? differs considerably from the model func-
tion corresponding to the empty spherical cavity model,
see the dotted line and the solid line labeled “2” in Fig. 1.

Trans-Stilbene in n-Alkanes

In Ref. [44] the radiative decay rate of trans-stilbene
in n-hexane and n-tetradecane was recorded as a func-
tion of the solvent refractive index. The refractive index
of each solvent was varied by changing the temperature.
The data were found to satisfy the empirical equation

I'=Tyn" (71)

where x = 1.65 = 0.08 and I’y = 3.75 X 10%~! [44]. From
Eq. (71) it follows that on a log(I") versus log(n) plot the
data points fall on a straight line with the slope of 1.65
* 0.08. It is interesting to compare this with the slopes
of log(I") versus log(n) plots for the known cavity mod-
els. The curves shown in Fig. 1 make it apparent that for
most models the slope changes with the refractive index.
We are interested in comparing the slopes in the refrac-
tive index range between n = 1.350 (the refractive index
of n—hexane at 70°C) and n = 1.430 (the refractive index
of n—tetradecane at 18°C), because for this range the
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Fig. 6. The radiative decay rate of 9-cyanoanthracene as a function of
the solvent refractive index. Square: the radiative decay rate of
9-cyanoanthracene in a jet-cooled gas at low pressure [46]. Circles,
broken, solid and dotted line: see the legend of Fig. 5.
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experimental data are available. The midpoint of this range
corresponds to n = 1.390. Substituting this n value in Eqgs.
(67-69) yields the following slopes: 1.00 for the model
of a fluorescent molecule superimposed on top of an ideal
medium, 2.97 for the virtual spherical cavity model, and
1.82 for the empty spherical cavity model. The values of
1.00 and 2.97 are too far from the experimental value of
1.65 = 0.08; this rules out the first two models. The slope
for the empty spherical cavity model is much closer to
the experimental value, but it is still greater than the upper
limit of the confidence interval. In the case of an empty
ellipsoidal cavity model the slope depends on the value
of L,, and by choosing the appropriate value of L, one
can match any slope between 1.00 and 5.00 in a narrow
refractive index range. From Eq. (70) it follows that for
n = 1.390 the slope of 1.65 is achieved with L, = 0.272,
and the slope range of 1.65 * 0.08 corresponds to the L,
range of 0.272 * 0.029. All values in this L, range are
lower than one third, which proves that the transition mo-
ment o, is parallel to the longest axis of the ellipsoidal
cavity. It is well known that in trans-stilbene the direc-
tion of the transition moment [y, coincides with the
longest dimension of the molecule. From this we conclude
that in the case of trans-stilbene in n-alkanes the longest
axis of the ellipsoidal cavity has the same direction as the
longest dimension of the solute molecule. This finding is
consistent with the notion that the shape of the cavity must
resemble the shape of the molecule.

DISTANCE CUTOFF FOR MEDIUM EFFECTS

In real life a fluorescent molecule is never placed
in a homogeneous solvent of infinite dimensions, there
is always a cuvette wall or another object at a finite dis-
tance from the molecule. If the distance to the foreign
object is long enough, then the object has no effect on
the spontaneous emission rate and the excitation rate.
The cutoff distance at which the effects of all foreign
objects vanish is estimated in this section. An easy way
to obtain the estimate of the cutoff distance is based
on a model system suggested by Drexhage [55].
Consider a spherical mirror made of a material with
100% reflectivity. The mirror has the shape of one half
of a full sphere, as if the sphere was cut by a plane pass-
ing through its center, and one half was removed. A flu-
orescent molecule is placed at the center of the sphere.
If the molecule had an infinitely narrow emission spec-
trum, then the radiative decay rate would be given by
the equation

I' = 2sin*(2mnR/N) Ty, (72)

Here T is the spontaneous emission rate of the fluores-
cent molecule at the center of the sphere, 'y, is the
spontaneous emission rate of the same molecule in the
same medium, but without the mirror, n is the refrac-
tive index of the medium, R is the radius of the sphere,
and \ is the emission wavelength (measured in vacuum).
If 2nR = m\, where m is an integer, then the radiative
rate equals zero. If 2nR = (m + %)\, then the radiative
rate equals 2I'y,,. As the radius R increases, the radi-
ative rate keeps oscillating between 0 and 2I'y,,, and
there is no cutoff distance for this oscillation if the flu-
orescent molecule emits only one wavelength. Now con-
sider emission at two different wavelengths, A; and \,.
If the condition

2nRIN, — 2nRIN, = 3 (73)

is satisfied, then the emission at A, reaches a peak value
when the emission at \, reaches zero and vice versa. It
is convenient to convert Eq. (73) from wavelengths to
wavenumbers:

2nR(W, — 1) =3 (74)

If on the wavenumber scale the emission spectrum has a
width Ay that satisfies the condition

2mR AV = 1 (75)

then for any v, within the emission spectrum one can
always find a v, within the emission spectrum so that for
the pair the condition in Eq. (74) is satisfied. Eq. (75)
can be resolved with respect to R, which will then give
the cutoff distance for the emission spectrum of the width
Av. Because this is a rough estimate, and the value of
n is close to unity, omitting n from the expression for
Rc is not going to make a big difference:

R. = 1/(2AD) (76)

Eq. (76) gives the cutoff distance for medium effects
on both the spontaneous emission rate and the excita-
tion rate; however, in the case of the emission rate one
should substitute for Av the width of the emission spec-
trum, whereas in the case of the excitation rate one should
use the smaller of the absorption spectrum width and the
exciting radiation bandwidth. For a laser source of vis-
ible light the radiation bandwidth may be so narrow, that
R may exceed the distance between the cornea and the
retina in the human eye. In this case the rate of excita-
tion of individual rhodopsin molecules in the retina is
affected by the interfaces between different media in the
human eye, and a characteristic speckle pattern becomes
visible.
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SUMMARY

Based on previously published theoretical and
experimental work of many authors it is fair to conclude
that the empty spherical cavity model and the empty
ellipsoidal cavity model give the most accurate descrip-
tion of the solvent refractive index effects on the radia-
tive decay rates and extinction coefficients of fluorescent
solutes. Generally speaking, the shape of the cavity from
which a fluorescent molecule expels all solvent molecules
depends not only on the shape of the fluorescent mole-
cule but also on the physical nature of the solvent—solute
interactions. If the potential energy of the solute—solvent
interactions is independent of the solute orientation, the
cavity shape is spherical. If the solute—solvent interactions
involve hydrogen bonding or another type of bonding with
solute-orientation—dependent bond energy, then the cavity
shape may not be spherical. In this case the empty ellip-
soidal cavity model is a better choice. The ellipsoidal
model includes the spherical model as a special case. The
ellipticity parameter L,, can assume values between 0 and
1 depending on the cavity shape and the orientation of the
electronic transition dipole moment responsible for
absorption and emission. For a spherical cavity L, = 3
If the cavity is not spherical and the transition moment is
parallel to its longest dimension, then L, < 1. If the tran-
sition moment is parallel to the shortest dimension of the
cavity, then L, > 1. The radiative decay rate and the molar
extinction coefficient vary with the solvent refractive index
according to Egs. (77, 78):

5
n

N (1 —Lyn*+ LT

k=T T, (77)

n3

(1= Lyn* + L,

e(\) = €o(N) (78)

If the shapes of the absorption and emission spec-
tra change between different solvents, it is also neces-
sary to take into account that Iy in Eq. (77) is directly
proportional to <i3)fcf, see Egs. (50, 35, 36), and instead
of Eq. (78), one should use

M g(N) An’
d\ = ; ;
Xow [(A—L)n+L]

(79)

where A is a constant factor and the wavelength interval
(Mins Nnar) must completely include the absorption band
corresponding to the electronic transition 1 < 0 and no
other absorption bands. It is also necessary to take into
account that the value of L, may differ from one solvent

Toptygin

to another, especially in the case in which at least one
of the solvents is hydrogen bonding.
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